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Abstract
The local deformation of two-dimensional Lennard-Jones glasses under imposed shear strain is
studied via computer simulations. Both the mean squared displacement and mean squared strain
rise linearly with the length of the strain interval �γ over which they are measured. However,
the increase in displacement does not represent single-particle diffusion. There are long-range
spatial correlations in displacement associated with slip lines with an amplitude of order the
particle size. Strong dependence on system size is also observed. The probability distributions
of displacement and strain are very different. For small �γ the distribution of displacement has
a plateau followed by an exponential tail. The distribution becomes Gaussian as �γ increases
to about 0.03. The strain distributions consist of sharp central peaks associated with elastic
regions, and long exponential tails associated with plastic regions. The latter persist to the
largest �γ studied.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The mechanical properties of amorphous materials are
important in many structural applications and the microscopic
mechanisms underlying plastic deformation have been the
subject of great theoretical interest [1–3]. While deformation
of crystalline materials can be understood through the
generation and propagation of dislocations, no analogous
defect has been identified in disordered materials. This
has a direct impact on their mechanical properties, since
dislocation motion reduces the yield stress of crystals by orders
of magnitude. In the last decade, it has also been realized
that amorphous materials share many features with colloids,
granular media and other systems where motion is jammed
or arrested by packing constraints [4–6]. Common features
are observed in the onset of motion under external forces in
such systems, and understanding their behavior represents a
fundamental problem in nonequilibrium statistical mechanics.

Recent simulations and experiments have followed the
motion of individual atoms or particles to understand how
disordered solids deform under shear [2, 5–30]. One of
the most studied quantities has been the van Hove function
P(�r; �t), which describes the probability distribution of

the displacements �r of atoms as a function of time interval
�t . Here �r is defined relative to a uniformly (affinely)
sheared system. In equilibrium systems, P(�r) has been used
to determine the timescale on which particles escape from
local cages [5, 6, 31] and its long time behavior gives the
diffusion constant. Studies of sheared systems have examined
the changes in P(�r) to determine the effect of strain rate on
caging times and diffusion [14, 15, 22, 24, 32]. These studies
have generally found 〈�r 2〉 ∝ �t as expected for single-
particle diffusion. In some cases the associated nonequilibrium
diffusion constant obeys a generalized fluctuation dissipation
theorem with an effective temperature [14, 15, 24].

In this work, we use molecular dynamics (MD)
simulations to examine the spatio-temporal correlations in
�r in athermal systems that are driven by steady shear.
This models the low temperature behavior of amorphous
atomic systems as well as disordered granular or colloidal
systems where thermal fluctuations are small. As in most
studies of similar systems [22, 24, 32], we find that the long
time evolution of P(�r; �t) is consistent with the diffusion
equation. However, the displacement shows strong spatial
correlations that span the entire system. Thus P does not
describe single-particle diffusion and the diffusion constant
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has a strong dependence on system size [32]. The spatial
correlations in �r are associated with plastic deformation
along slip lines that grow to span the system. The slip
accommodated in these plastic zones is one or two molecular
diameters. This sets a characteristic strain interval between
their formation that decreases with system size. Spatio-
temporal correlations in the location of the slip lines are studied
through images and the evolution in the functional form of P
with strain.

The long-range spatial correlations in �r reflect the
fact that large regions deform elastically. To measure the
local magnitude of non-affine deformations, we evaluate the
vorticity in the displacement field ω

.= ∇��r . Other measures
of the relative particle displacement have been considered
in previous work, but ω has the advantage that it allows
both the magnitude and direction of the displacements to be
quantified. This allows strong directional, spatial and temporal
correlations in strain to be identified.

The distributions of ��r and ω provide additional
information about correlations. Over short intervals, both
distributions show exponential tails covering up to eight orders
of magnitude. The strain characterizing the exponential decay
for ω is close to the macroscopic yield strain of the material.
As the interval of time or strain increases, P(��r ) becomes
more isotropic and converges to a Gaussian at strain intervals
of order 3%. The distribution of ω retains an exponential tail
out to much larger strains, indicating that particles are still not
undergoing single-particle diffusion.

2. Protocol and definitions

We perform classical 2D molecular dynamics simulations of a
bi-disperse mixture that is chosen to inhibit crystallization [29].
There are NL large (L) particles and NS small (S) particles with
NL/NS = (1 + √

5)/4. The interaction between particles
of type I and J is a Lennard-Jones (LJ) potential: UI J =
4ε[(r/σI J )−6 − (r/σI J )−12] where ε sets the characteristic
energy scale and σI J reflects the size of I and J . We set σLL =
1.0σ0, σSS = 0.6σ0, and σLS = 0.5(σLL + σSS) = 0.8σ0 and
measure all lengths in units of σ0. To speed calculations, the
potential is truncated smoothly using a fourth order polynomial
that matches the LJ potential and force at rin = 1.2σI J and
takes both to zero at rout = 1.5σI J . All particles have mass m

and the characteristic time is τ ≡
√

mσ 2
0 /ε.

The equations of motion are integrated using the parallel
MD code LAMMPS [33] with time step δt = 0.0056τ .
The system temperature is maintained at zero by applying a
locally Galilean-invariant Kelvin damping mechanism [34].
Neighboring particles exert equal and opposite drag forces on
each other which are proportional to their relative velocity. The
value of the damping constant was set to 0.45m/τ . With this
choice, modes with wavelengths at the particle scale are nearly
critically damped and damping decreases at longer lengths.
The limit of zero temperature is of fundamental interest in
atomic systems and thermal motion can generally be ignored
in systems where the particles represent larger entities such as
grains or colloids.

An amorphous state of the system is prepared following
the protocol in previous studies [30]. Periodic boundary
conditions with periods Lx and L y are used. A random
configuration with a particle area fraction of 0.85 is
equilibrated for 20 000 time steps using a soft repulsive
potential to ensure particles do not overlap. The interaction
is then switched to the LJ potential, and the damped system
is run for 10 000 timesteps with fixed area. The system is
next allowed to expand toward a zero pressure state under an
isotropic Nose–Hoover barostat [33] with a time constant of
220τ and a damping parameter of 45 τ−1 for 10 000 timesteps.
A final quench is run for 10 000 timesteps with a fixed cell size
prior to shearing.

Equilibrated systems are compressed along the y direction
at constant true strain rate γ̇ and expanded along x to maintain
constant area: Lx = Lx0e+γ̇ t , L y = L y0e−γ̇ t . Unless noted,
the results below are for about 1.6 × 106 particles with Lx0 =
L y0 ≈ 1000σ0, and γ̇ = 0.45 × 10−5τ−1. Studies showed that
this strain rate was slow enough to be in a quasistatic regime
where results are rate-independent. For this reason, results
will be expressed in terms of the interval of strain �γ over
which they were obtained, rather than in terms of time interval.
For small strains the rate of plastic deformation increases with
strain and may be sensitive to initial conditions [18, 20, 35].
For strains greater than 6% the behavior becomes independent
of strain and initial state. Data presented below are all from
this steady state regime.

The non-affine component ṽ of a particle’s velocity v is the
deviation from the velocity associated with a uniform strain:

ṽx = vx − γ̇ x(τ )

ṽy = vy + γ̇ y(τ ).
(1)

Integrating over time gives the net non-affine displacement
��r = (�x,�y) over any finite strain interval. Note that
this is not the same as taking the difference between the
final position of a particle and the position corresponding
to an affine displacement. The reason is that a small non-
affine displacement at the beginning of a time interval is
amplified by subsequent affine flow and would have the
same impact as a much larger non-affine motion at the end
of the interval. A similar effect produces an extra Taylor
diffusion in sheared fluids [36]. From now on we shall refer
to the non-affine displacement simply as ‘displacement’ and
use ‘total displacement’ when the affine component is not
subtracted. Note that the non-affine displacement averaged
over the periodic cell is zero. This follows because the
equations of motion in the deforming cell [33] conserve the
sum over particles of the peculiar momentum mṽ and all
particles have the same mass.

The results presented below show that the displacement
field has long-range spatial correlations. A more local measure
of deformation is provided by the spatial derivatives of �r,
which are obtained in the following way. A Delaunnay
triangulation is found for an initial reference configuration,
with vertices at the center of all particles. The derivatives
∂i�r j on each triangle are then calculated from the finite
difference between displacement vectors at the three vertices.
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Figure 1. Grayscale plots of the projections of a typical non-affine displacement field ��r onto different directions. Top left: �x . Top right:
�y. Bottom left: (�x + �y)/

√
2. Bottom right: (�x − �y)/

√
2. Here �γ = 0.002, the x-axis is horizontal, and the gray scale is linear,

ranging from −σ0 (black) to +σ0 (white).

To make plots and evaluate probability distributions, the
derivatives are sampled on a fine, rectilinear grid with spacing
∼σ0/3. An important property of this piece-wise constant
definition of ∂i�r j is that its integral along an arbitrary path
connecting any two particles gives the exact difference between
the displacement vectors of the two particles. This guarantees
that mean strains on large scales are equal to the spatial average
of local values.

Because the area is fixed and the system is densely packed,
changes in density are small. As a result, we find that the
local divergence of the displacement field is negligible. Most
of the deformation takes the form of local shear strains that
are quantified by the curl of the displacement field or vorticity:
ω ≡ ∂y�x − ∂x�y, which represents the antisymmetric part
of the derivative tensor. For two-dimensional systems the
curl is a vector perpendicular to the plane and thus invariant
under rotations within the plane. Note that it is conventional
to associate the magnitude of shear with a symmetric scalar
invariant, 1

2

√
(∂x�x − ∂y�y)2 + (∂x�y + ∂y�x)2, the so-

called deviatoric strain. Such symmetric definitions of the
strain are completely blind to the vorticity of the displacement
which we show below to be quite important in our system.
In particular, we will see that the sign of ω is strongly
correlated with the orientation of lines along which shear
occurs. As the magnitude of the strain increases, nonlinear
terms in the definition may become important. The vorticity
can be generalized to a rotation tensor Ri j defined by the

decomposition: δi j +∂i�r j = Sik Rkj , where Si j is a symmetric
tensor that describes pure axial stretching. In the limit of
infinitesimal strains, ω and the rotation angle associated with
Ri j become identical. For finite strains, we find qualitatively
similar results for the distribution of ω and the rotation angle.

3. Spatial variation of displacement and strain

In figure 1, we plot projections of a typical displacement
field for �γ = 0.002 onto horizontal, vertical and diagonal
directions: �x , �y, (�x + �y)/

√
2, and (�x − �y)/

√
2.

All projections show strong spatial correlations over scales
comparable to the system size, but different projections
highlight different features. For example, the plot for the
component proportional to �x − �y is dominated by a region
of strong gradient extended roughly along y = −x while the
�x +�y component has a few smaller features extended along
y = x and centered roughly about the large feature in �x−�y.
The displacements �x and �y show a superposition of all
these features. Note that some of the features extend around
the periodic boundary conditions.

The strong spatial correlations evident in figure 1 show
that most of the displacements of atoms that contribute to
P(�r; �γ ) are very far from independent random walks by
each particle. The correlations result from shear along spatially
extended slip lines. The slip lines show up as lines of rapid
gradients in figure 1. Because they reflect a shear displacement,
the amplitude of the displacements is largest for the projection

3
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Figure 2. An idealized schematic representation of the (top) total and
(bottom) non-affine displacements parallel to a slip line as a function
of distance away from the line. The change a in the total
displacement across the periodic cell is accommodated in a plastic
zone of width h where the displacement changes rapidly, ω ≈ a/h.
The total displacement in the surrounding elastic regions is nearly
constant. Subtracting the affine displacement associated with a strain
�γ leads to a small gradient, ω ≈ �γ , in the elastic regions of plots
of the non-affine displacement.

along the slip line. Thus the slip line that spans the entire
system along x̂ − ŷ shows up most clearly in �x − �y, while
a number of smaller slip lines along x̂ + ŷ are emphasized in
�x + �y. The reason that slip lines are at an angle of roughly
45◦ from the compressive axis is that the stress tensor has the
largest shear (off-diagonal) components for these orientations3.
Put another way, shear along these lines is most efficient in
simultaneously contracting the system along the compressive
direction and expanding it in the tensile direction.

Figure 2 illustrates (top) the total displacement and
(bottom) the non-affine displacement along a slip line as
a function of the distance away from the slip line. The
change a in the total displacement across the periodic cell is
accommodated almost completely in a plastic zone of width
h. The total displacement in the surrounding elastic regions is
nearly constant. Subtracting the affine displacement associated
with a strain �γ leads to a small gradient ω ≈ �γ = a/L
in the elastic regions of plots of the non-affine displacement.
For h � L the gradient in the plastic zone is much higher,
ω ≈ a/h.

Traces through figure 1 and similar plots are roughly
consistent with figure 2. In all cases there are large regions
where the total displacement is nearly constant, leading to
a gradual slope ω ≈ a/L in the non-affine displacement.
The amount of strain accommodated in a plastic zone varies
somewhat with the strain interval, particularly for slip lines that
do not span the system and where there are multiple slip lines
in a given strain interval (figure 1 bottom left). The edge of
the plastic zone is also more diffuse than in figure 2, leading
to a rounding of the peaks in the non-affine displacement.
This rounding varies along the slip line as is evident from the
fluctuations along the primary ridge in the bottom right panel

3 Note that the periodic boundary conditions may favor slip line orientations
along low order periods such as the diagonals, but we find the angle remains
near 45◦ to the compressive axis even when the cell has deformed significantly.

of figure 1. These variations have important implications for
the distributions discussed in the next section.

The form of plots like figure 1 depends on strain, strain
interval and system size. At very small strains, the entire
system responds elastically and the displacements are small.
As the strain increases, the stress and rate of plasticity rise. For
strains of 6% and greater we find that the system is in a nearly
steady state. In this regime, plastic deformation tends to occur
in a series of rapid ‘avalanches’ with a wide range of sizes
that will be discussed further in future work [37]. Between
these avalanches the displacement field may be small, but
the strain interval between avalanches decreases rapidly with
system size. For the system size considered here, plastic zones
that span a large fraction of the system are always observed for
�γ � 0.002 and this is the reason we focus on intervals of
this order. Many avalanches occur during this strain interval
and they cluster spatially to produce the slip lines evident in
figure 1.

The evolution of the spatial organization of plastically
deformed regions is illustrated in figure 3. The left-hand
side shows the magnitude of the non-affine displacement, �r ,
rather than individual components. It is these magnitudes
that are used to construct the widely studied P(�r; �γ ).
The right-hand side shows ω, which quantifies the amount
and direction of local shear. The successive panels
moving downwards in figure 3 show the changes over
progressively longer strain windows starting from the same
initial configuration as in figure 1.

The families of slip systems along both diagonals
contribute equally to �r and are visible in the left-hand panels.
However, taking the magnitude of the displacement obscures
the nature of the atomic rearrangements. The slip lines that
appeared as sharp steps in �x + �y and �x − �y appear
now as regions of low �r surrounded by halos of higher �r .
The origin of this behavior is evident from figure 2. The peak
displacements occur at the outer edges of the plastic zone at
a distance of order h/2 from the center of the slip line. The
magnitude drops rapidly to zero at the slip line and much more
slowly in the elastic region outside.

A better measure of the local plastic response is provided
by ω. The ω field is clearly localized on the regions of
strong shear and much smaller away from these regions. From
figure 2 we expect the shear strain to be of order �γ in the
elastic regions and much higher in the plastic regions that
accommodate almost all the deformation of the cell. The
numerical values of |ω| are consistent with this expectation.
Note that the sign of ω carries important information about
the direction of slip. In particular, the two families of slip
planes produce opposite signs, with a clockwise rotation along
lines running parallel to x̂ − ŷ and a counterclockwise rotation
on perpendicular slip lines. Thus plots of ω highlight the
correlations along individual slip lines.

The successive panels moving down figure 3 show how
displacements add as the strain interval increases. Over
short intervals �γ � 0.002 we find that the displacements
tend to organize along system spanning lines. This allows
the entire displacement to be accommodated in plastic zones
with minimal energy stored in deformation of elastic regions.

4



J. Phys.: Condens. Matter 20 (2008) 244128 C E Maloney and M O Robbins

Figure 3. Left: the magnitude, �r , of the (non-affine) displacement fields. Gray scale is linear ranging from 0 (black) to +2.5σ0 (white).
Right: the curl, ω, of the (non-affine) displacement fields. Gray scale is linear ranging from −0.25 (black) to +0.25 (white). Displacements
are computed relative to the same initial state as in figure 1 and over growing strain intervals �γ = 0.002 (top), 0.004 (center), and 0.008
(bottom).

Subsequent slip lines appear to occur at random locations
rather than continuing to nucleate along the same path to
produce a persistent shear band (e.g. as in [38]). One way
of quantifying this is through the autocorrelation function for
displacements over successive intervals. We find that this
correlation function drops rapidly. By �γ = 0.003 the
correlations have dropped by about 2 orders of magnitude and
are comparable to the noise. This is consistent with figure 3
where we see a growing number of independent slip lines for
�γ � 0.004. A superposition of randomly located slip lines is
consistent with the diffusive growth in �r and ω discussed in
the next section.

The strain interval over which deformations are correlated
depends on system size and seems to be related to a

characteristic amplitude of the slip across plastic zones.
Examination of many plots like figure 1 shows that a varies
from about the mean particle diameter 0.8σ0 in the central
region of shorter slip lines to about twice this value in a system
spanning slip line like that in the bottom right of figure 1.
It is perhaps not surprising that once a is of order a particle
size it is energetically favorable to have plastic deformation
everywhere along the slip line rather elastic deformation. Note
that the strain interval needed to produce a displacement a is of
order a/L. This implies that throughgoing faults should occur
over �γ ∼ 0.001 to 0.002 in our systems. Our observations
are consistent with this and analysis of the avalanche size
distribution also shows that the largest events are spaced by
�γ ∼ 0.002.
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The plastic regions in figure 1 and on the left of figure 3
have a significant width h ∼ 50σ . Thus the mean shear strain
across these regions is only of order a/h ∼ 0.02–0.04 for
�γ = 0.002. While this is an order of magnitude larger than
the mean strain �γ , the peak strains on the right of figure 3 are
higher still. Each broad slip zone contains a number of much
sharper features with strains that are an order of magnitude
higher (|ω| = 0.2–0.4). The width of these smaller features
is only a few particle diameters. More detailed studies of the
time dependence show that the slip zones are formed by a large
number of avalanches that are spatially correlated to produce
the system spanning lines in the figures. The long-range spatial
correlations in the strain field are analyzed in [39] and we
will focus below on the temporal evolution of the probability
distribution of displacement magnitudes and ω.

Comparing results for different system sizes, L0, indicates
that h increases roughly linearly with L0 while the width of
the high strain regions remains of order the particle diameter.
It is interesting to note that the width of fault regions in
earthquake systems also tends to scale in rough proportion to
the length [40]. Studies of different system sizes also indicate
that the slip amplitude along throughgoing slip lines is always
of order one to two particle diameters. If a is independent of
system size, then the strain interval needed to produce a slip
line should be inversely proportional to system size. There
should also be a slower decay with �γ in the displacement
autocorrelation function. Results for smaller systems (L0 =
250 and 500) are consistent with these predictions.

4. Probability distributions of displacement and
strain

Figure 4 shows the probability distribution for finding a given
displacement over successive strain intervals with �γ =
0.002. The distribution P(�r) is normalized so that the
integral over all vectors Δr is unity. With this definition the
distribution goes to a constant as �r → 0. Note that the
distribution varies significantly from interval to interval. This
reflects the large scale structure of the slip lines discussed
above. In contrast, the distribution of the more local variable
ω is nearly the same for all intervals. Its average behavior is
discussed below.

For an ideal system spanning slip line with a constant
magnitude a and h � L, traces like figure 2 (bottom) would
consist of two straight segments of constant slope �γ and a/h,
respectively. The distribution P(�r) would be constant from
0 to a/2 and zero for larger displacements. Given the range
of a discussed above, one would expect plateaus extending to
�r ∼ 0.4σ0 to 0.8σ0 in figure 4. The curves show a crossover
from gradual to rapid decrease at �r in this range, but do
not show true plateaus. Analysis of displacement fields like
those in figures 1 and 3 show that a varies along the slip line.
As discussed above, there is also smearing along the edge of
the plastic region that rounds the peaks in traces like figure 2.
Interactions between the two families of slip planes also alter
the distribution. Together theses effects lead to a reduction
in the range of �r where the distribution for each interval is
constant, and an exponential tail in the probability distribution

Figure 4. P(�r) for several consecutive intervals with �γ = .002.
The average over all intervals from γ = 12 % to 24% is shown in
heavy black.

Figure 5. Variation with �γ of the mean-squared (left) displacement
〈�r 2〉 and (right) strain 〈ω2〉. Straight lines are linear fits through the
data points, which have statistical errors that are slightly smaller than
the symbol size.

at large magnitudes. Averaging over all intervals between 12%
and 24% produces the thick solid line. The crossover to the
exponential tail is broadened by averaging over intervals with
different values of a and the exponential tail becomes more
pronounced.

Figure 5 shows how the mean-squared displacement and
strain increase with �γ . All results are averaged over strains
between 12% and 24%. As would be expected for a diffusive
process, both 〈�r 2〉 and 〈ω2〉 rise linearly with �γ . The fit
lines have a small negative offset at �γ = 0. This reflects the
correlation in the increase in both quantities at small strains,
which cause them to rise quadratically with �γ at small strain
intervals (�γ � 0.001). While the linear rise of 〈�r 2〉 at
large �γ is consistent with diffusion, this only implies that
the displacements of any given particle in successive strain
intervals are uncorrelated. As shown above, there are strong
spatial correlations that imply one should not view the slope of
figure 5 (left) as a single-particle diffusion constant. A detailed
examination of the probability distributions also reveals some
subtle longer-lived correlations in displacement.

Figure 6 shows the probability distribution of displace-
ments averaged over initial states and scaled by

√
100�γ to

remove the mean increase in magnitude shown in figure 5. For
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Figure 6. Average displacement distributions, P(�r;�γ ), for
�γ = 0.001 (dot–dashed), 0.002 (dotted), 0.008 (dashed), and 0.032
(solid). To compensate for the increase in width with �γ , the curves
are plotted as a function of s ≡ �r/σ0(100�γ )0.5. The thick (red)
dotted line is a one-parameter fit of the �γ = 0.032 data to a
Gaussian. Averages are over all intervals from γ = 12% to
γ = 24%.

the smallest interval, the distribution has an exponential tail
that extends over eight orders of magnitude. It is interesting
to note that the displacement distributions following individual
plastic events or avalanches have also been found to be expo-
nential [22, 32]. If successive events were strictly decorrelated,
the distributions for longer intervals would be given by auto-
convolving the distributions for short intervals and would con-
verge to a Gaussian. The distributions do seem to become more
Gaussian as �γ increases, but there is a systematic decrease in
the probability of large events for �γ = 0.008. This suggests
that the behavior is still correlated, with large displacements
less likely to occur in the same location as in previous intervals.
By �γ = 0.032 these correlations have nearly disappeared and
the data are consistent with a Gaussian distribution. It is inter-
esting to note that at this point the product of the number of
throughgoing faults (∼0.032/0.002 = 16) and the fraction of
the system affected by each (h/L ∼ 50/1000) is of order one,
implying that slip lines must revisit the same regions of space.

Figure 7 shows the time averaged ω distributions for
various �γ . The distributions consist of central peaks that
cross over to exponential tails. The exponential tails persist
even at the largest �γ . Roughly speaking, regions of the
material with small strains away from any shear zones (the
gray regions in the right column of figure 3) contribute to the
‘elastic’ central peaks, while the strongly sheared material in
the core of the shear zones (the black and white regions in the
right column of figure 3) contributes to the ‘plastic’ exponential
tails. To first order, weight is removed from the central peak
and redistributed to the tails as the amount of plastic strain
increases.

To test this picture quantitatively, the ω distributions
are scaled by �γ and replotted in figure 8. This rescaling
comes close to collapsing the data in the tails for the
smallest �γ , but becomes less satisfactory for increasing �γ .
Direct convolution of data from small intervals shows similar
deviations from probabilities for larger intervals. This implies
that there is some additional correlation over the range of
�γ considered here. Fits to an exponential decay, P(ω) ∼

Figure 7. The time averaged ω distributions, P(ω; �γ ) for
�γ = 0.001, 0.002, 0.004, 0.008, 0.016.

Figure 8. Distribution of ω scaled by �γ in per cent for
�γ = 0.001, 0.002, 0.004, 0.008, 0.016. Curves increase with �γ
at large ω. Straight lines show exponential fits, P ∝ e−ω/ω∗ , and the
inset shows ω∗ as a function of �γ . Curves for higher �γ are higher
as in figure 7.

exp(ω/ω∗), show a slight increase in ω∗ with �γ (inset). This
increase implies that increasing �γ does not merely increase
the size of the plastic region and thus the total weight in the
tails. In addition, there is a slight increase in the relative
weight of large magnitude regions that must reflect a correlated
increase in strain in regions of large strain.

It is interesting to note that the value of ω∗ has a natural
physical interpretation. The vorticity ω = ∂y�x −∂x�y while
the shear strain is 0.5 ∗ [∂y�x + ∂x�y]. Thus ω∗ = 0.1
corresponds to a shear strain of about 5%, which is close to
the yield strain [19]. As noted above, the regions of large ω

have strains much bigger than the mean strain in the plastic
region (a/h) but small enough that there are several in the
plastic zone that combine to produce the total displacement.
The probability distribution suggests that the yield strain sets
the characteristic scale for these high strain regions.

Another important parameter is the strain interval required
to produce plastic deformation throughout the entire system.
One can estimate this from the integral under the exponential
tails in P(ω) at small strains, and the assumption that the
weight grows approximately linearly with �γ as in figure 8.
The result is that the regions of plastic strain should cover the
system after a strain of about 10%. This is larger than the
estimate of 3% strain required for plastic zones to cover the
system, but as noted above, only a fraction of the plastic zones
has the large strains indicative of local plasticity.
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5. Discussion

Although ours is, to our knowledge, the first study of
strain distributions in simulations of sheared systems, several
studies have looked at displacement distributions in athermal
systems. All considered simple shear, vx = γ̇ y, rather
than the pure shear strain studied here. Some simulations
used quasistatic protocols with small strain steps [22, 24, 32],
while others used a constant slow shear rate as in our
simulations [14, 15, 41]. The quasistatic studies all employed
Lennard-Jones potentials and imposed simple shear with
Lees–Edwards periodic boundary conditions [24, 32] or rigid
walls parallel to the flow direction [22]. Ono and co-
workers [14, 15] simulated steady shear of wet foams using
Durian’s bubble model [42], while Radjai and Roux simulated
granular media with dissipation entering through friction at
particle contacts [41]. Only the latter work and our simulations
include inertia. Despite the wide range of protocols and
interactions, almost all studies find diffusive behavior for the
non-affine displacement4. The only exception is the work
of Radjai and Roux [41] who found 〈�y2〉 ∝ �γ 1.8. It
seems very important to determine the cause of this striking
difference. The only unique feature of these simulations
appears to be the incorporation of friction forces, which are
not generally thought to lead to such qualitative changes in
behavior.

The value of the effective diffusion constant Deff ≡
〈�r 2〉/�γ can be estimated from our observations of slip
lines and the simple model in figure 2. This displacement
field gives a constant distribution of displacements from −a/2
to a/2, implying a mean-squared displacement of a2/12. If
system spanning slip lines produce independent displacements
at strain intervals of a/L, then 〈�r 2〉 ≈ (�γ/(a/L))a2/12
or Deff = La/12. Using the value of Deff = 57σ 2

0 from
figure 5, one finds a ≈ 0.7σ0. Improving the estimate of
the mean-squared displacement from each slip line leads to
larger values of a since the actual distribution of displacements
(figure 4) is cut off before a/2. We conclude that the measured
diffusion is consistent with the direct observation that slip lines
have amplitudes of one to two particle diameters and contribute
independently to the displacement.

This model for the effective diffusion constant implies a
linear scaling with system size. Our simulations for L = 250σ

and 1000σ are consistent with this linear scaling. Recent
studies of a similar model by Lemaitre and Caroli [32] also
showed a pronounced increase in Deff with system size. Data
for the two largest systems, L = 20 and 40, appear consistent
with linear scaling with L. Results for L = 10 are larger than
expected, but there may be significant finite size effects in such
small systems. Note that we find h/L ∼ 1/20, so system
sizes with L < 20 could not have the plastic zone occupying
the same fraction of the system. Extrapolating Lemaitre and
Caroli’s result5 for L = 40, Deff = (2.2 ± .1)σ 2

0 to L = 1000

4 For simple shear this is most easily measured in the displacement
perpendicular to the flow direction x , 〈�y2〉 ∝ �γ .
5 Note that in [32], the imposed homogeneous simple shear flow field is
defined as vx = γ̇ y, vy = 0. The associated symmetric strain rate tensor
associated with this flow field has a magnitude of γ̇ /2, so one needs to scale
the values of 〈�y2〉/�γ from [32] by a factor of 2 to make a direct comparison
with our results for pure shear geometry, vx = γ̇ x, vy = −γ̇ y.

yields Deff ≈ (55 ± 2.5)σ 2
0 , which is consistent with our

measured value of 57σ 2
0 . The magnitude of �γ needed to

observe diffusive behavior is also roughly a factor of 25 smaller
in our systems. These results provide a dramatic check of
the linear scaling with system size in diffusion, although we
caution that the different shearing geometry in [32] could affect
the comparison.

Lemaitre and Caroli discuss the system-size dependence
of their results in terms of displacements produced by
independent avalanches rather than independent slip lines.
Earlier studies of individual plastic events showed that the rate
of large avalanches scales with the system length [27, 29].
Based on the assumption that the total strain �γ was
accommodated by these avalanches, Maloney and Lemaitre
concluded that the displacement aa associated with each
avalanche was independent of system size and of order 0.1σ0.
Extrapolating their results [27, 29] for L ∼ 50 to our system
sizes would give large avalanches spaced by �γ = 0.0002,
an order of magnitude more frequent than the rate of system
spanning slip lines in our simulations. This is consistent
with our conclusion that the slip lines in figures 1 and 3
are not the result of individual avalanches, but the correlated
displacement produced by multiple avalanches. Assuming that
each avalanche contributes independently to the displacement
would give too small a value of Deff.

System-size dependence of Deff could be crucial in
analyses which invoke the notion of an effective temperature
based on an effective Stokes–Einstein relationship between
Deff and the viscosity η [15, 24]. The product of diffusion and
viscosity is related to the temperature in equilibrium systems.
In systems with a yield stress, the viscosity diverges like the
inverse strain rate, η ∼ �t/�γ , at low strain rates where the
stress reaches a plateau. As we have seen here, one also expects
the effective diffusion constant to grow linearly with the strain
rate: �r 2/�t = (�r 2/�γ )(�γ/�t). This means that the
product of the viscosity and diffusivity should become constant
at small enough strain rate: (�r 2/�t)η ∼ �r 2/�γ . However
our results imply that this constant should have a dramatic size
dependence, and one must proceed with caution to utilize it as
an effective temperature.

The scaling of Deff would be very different if the
correlations in displacement did not span the system. There is
some evidence that system spanning slip lines are suppressed
by increasing temperature [18, 20]. They may also be
suppressed by the surrounding fluid in experiments on colloidal
systems [43]. Dissipation through flow in the fluid is
reduced by maintaining a linear flow profile that may inhibit
localization of the plastic deformation. Studies of both effects
would be of interest.

Correlated atomic motions have also been observed in
unsheared systems. In particular, several studies reveal spatial
correlations that grow in extent as the temperature is decreased
to the glass transition temperature Tg [5, 44–48]. Large
displacements are associated with strings of particles whose
displacement is directed along the string [47, 48]. Such
displacement fields are very different than the thick, system
spanning slip zones described above. Rather than producing a
net shear displacement, the strings allow the total displacement

8
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of surrounding regions to remain small. A plot like figure 2
would have the form of a sharp peak, rather than a step. It
seems clear that shear is responsible for producing the long-
range correlations and striking size-dependent diffusion in our
systems.

The most important message in our results is that one must
go beyond the second moments of the displacement and strain
distributions to get insight into the microscopic processes at
play in sheared systems. Displacement distributions may be
nearly Gaussian, scaling with

√
�t , while at the same time,

there may be strong spatial correlations and heterogeneities
in the system. The strain distributions can remain far from
Gaussian, even while the displacement distributions become
nearly Gaussian. Such behavior provides a clear signature of
spatial organization. Furthermore, while individual particle
trajectories may seem jerky, with smooth motion interrupted by
abrupt jumps, these jumps should not necessarily be interpreted
as a particle escaping the cage formed by its neighbors (as
is often assumed to be the case), but could just as easily
correspond to coherent displacement of the neighborhood with
very little relative motion of particles. In the future, it will
be interesting to repeat the strain analysis here for thermal
(e.g. super-cooled liquids) or Brownian (colloidal suspensions)
systems on approach to the jamming transition. This kind
of measurement could serve as an important probe of the co-
operative nature of the dynamics.
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